skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kearns, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Some of the amphibian populations in Panama are demonstrating slow recovery decades after severe declines caused by the invasion of the fungal pathogenBatrachochytrium dendrobatidis(Bd). However, new species remain to be described and assessed for the mechanisms of disease resilience. We identified seven skin defense peptides from a presumably novel leopard frog species in the Tabasará range, at Buäbti (Llano Tugrí), Ngäbe-Buglé Comarca, and Santa Fe, Veraguas, Panama, herein called the Ngäbe-Buglé leopard frog. Two of the peptides were previously known: brevinin-1BLb fromRana (Lithobates) blairiand a previously hypothesized “ancestral” peptide, ranatuerin-2BPa. We hypothesized that the peptides are active againstBdand shape the microbiome such that the skin bacterial communities are more similar to those of other leopard frogs than of co-occurring host species. Natural mixtures of the collected skin peptides showed a minimum inhibitory concentration againstBdof 100 μg/ml, which was similar to that of other leopard frogs that have been tested. All sampled individuals hosted high intensity of infection withBd. We sampled nine other amphibian species in nearby habitats and found lower prevalence and intensities ofBdinfection. In addition to the pathogen load, the skin microbiomes were examined using 16S rRNA gene targeted amplicon sequencing. When compared to nine co-occurring amphibians, the Ngäbe-Buglé leopard frog had similar skin bacterial richness and anti-Bdfunction, but the skin microbiome structure differed significantly among species. The community composition of the bacterial skin communities was strongly associated with theBdinfection load. In contrast, the skin microbiome composition of the Ngäbe-Buglé leopard frog was similar to that of five North American leopard frog populations and the sympatric and congenericRana (Lithobates) warszewitschii, with 29 of the 46 core bacteria all demonstrating anti-Bdactivity in culture. Because of the highBdinfection load and prevalence in the Ngäbe-Buglé leopard frog, we suggest that treatment to reduce theBdload in this species might reduce the chytridiomycosis risk in the co-occurring amphibian community, but could potentially disrupt the evolution of skin defenses that provide a mechanism for disease resilience in this species. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  2. The emerging fungal pathogenBatrachochytrium salamandrivorans(Bsal) threatens the diversity of amphibians, particularly in North America where it is projected to invade. Amphibian skin defenses include a mucosal layer containing microorganisms that can potentially modulate host response to pathogens such asBsal. In this study, we focused on the composition of the skin microbiome across life stages of spotted salamanders (Ambystoma maculatum). We also evaluated the stress hormone corticosterone and skin microbiome response to inoculations withBsaland probiotics at both the larval and juvenile developmental stages, and the response to different environmental conditions. Results indicated that both bacterial and fungal communities found on the skin significantly differed in structure and diversity between life stages ofA. maculatum. Exposure to three different probiotics (Bacillus thuringiensis,Chryseobacterium rhizoplanae, andPenicilliumsp.) andBsalevoked shifts in the microbiome of larvae and juveniles, and the metabolite profile of the larval mucosal layer ofA. maculatum. Despite changes in the microbiome, all tested probiotics andBsalwere unable to persist on the skin. Larval bacterial microbiomes shifted in response toBsalandB. thuringiensiswith no significant impacts on antifungal function or bacteria richness, however fungi strongly responded toBsalandB. thuringiensisapplication. This indicates that developmental shifts in the microbiome can be initiated by microbial applications such asB. thuringiensis, a widely used mosquito larvicide. Overall, experimental results indicate that life stage, growth and development, and environmental conditions appeared to be the main factors driving changes in the amphibian skin microbiome and potential anti-Batrachochytriumfunction. 
    more » « less
  3. Bats are widespread mammals that play key roles in ecosystems as pollinators and insectivores. However, there is a paucity of information about bat-associated microbes, in particular their fungal communities, despite the important role microbes play in host health and overall host function. The emerging fungal disease, white-nose syndrome, presents a potential challenge to the bat microbiome and understanding healthy bat-associated taxa will provide valuable information about potential microbiome-pathogen interactions. To address this knowledge gap, we collected 174 bat fur/skin swabs from 14 species of bats captured in five locations in New Mexico and Arizona and used high-throughput sequencing of the fungal internal transcribed (ITS) region to characterize bat-associated fungal communities. Our results revealed a highly heterogeneous bat mycobiome that was structured by geography and bat species. Furthermore, our data suggest that bat-associated fungal communities are affected by bat foraging, indicating the bat skin microbiota is dynamic on short time scales. Finally, despite the strong effects of site and species, we found widespread and abundant taxa from several taxonomic groups including 
    more » « less
  4. ABSTRACT There are complex interactions between an organism's microbiome and its response to stressors, often referred to as the ‘gut–brain axis’; however, the ecological relevance of this axis in wild animals remains poorly understood. Here, we used a chronic mild stress protocol to induce stress in wild-caught house sparrows (Passer domesticus), and compared microbial communities among stressed animals, those recovering from stress, captive controls (unstressed) and a group not brought into captivity. We assessed changes in microbial communities and abundance of shed microbes by culturing cloacal samples on multiple media to select for aerobic and anaerobic bacteria and fungi. We complemented this with cultivation-independent 16S and ITS rRNA gene amplification and sequencing, pairing these results with host physiological and immune metrics, including body mass change, relative spleen mass and plasma corticosterone concentrations. We found significant effects of stress and captivity on the house sparrow microbiomes, with stress leading to an increased relative abundance of endotoxin-producing bacteria – a possible mechanism for the hyperinflammatory response observed in captive avians. While we found evidence that the microbiome community partially recovers after stress cessation, animals may lose key taxa, and the abundance of endotoxin-producing bacteria persists. Our results suggest an overall link between chronic stress, host immune system and the microbiome, with the loss of potentially beneficial taxa (e.g. lactic acid bacteria), and an increase in endotoxin-producing bacteria due to stress and captivity. Ultimately, consideration of the host's microbiome may be useful when evaluating the impact of stressors on individual and population health. 
    more » « less
  5. ABSTRACT At any given time, only a subset of microbial community members are active in their environment. The others are in a state of dormancy, with strongly reduced metabolic rates. It is of interest to distinguish active and inactive microbial cells and taxa to understand their functional contributions to ecosystem processes and to understand shifts in microbial activity in response to change. Of the methods used to assess microbial activity-dormancy dynamics, 16S rRNA/rRNA gene amplicons (16S ratios) and active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the most common, yet each method has limitations. Given that in situ activity-dormancy dynamics are proxied only by laboratory methods, further study is needed to assess the level of agreement and potential complementarity of these methods. We conducted two experiments investigating microbial activity in plant-associated soils. First, we treated corn field soil with phytohormones to simulate plant soil stress signaling, and second, we used rhizosphere soil from common bean plants exposed to drought or nutrient enrichment. Overall, the 16S ratio and CTC methods exhibited similar patterns of relative activity across treatments when treatment effects were large, and the instances in which they differed could be attributed to changes in community size (e.g., cell death or growth). Therefore, regardless of the method used to assess activity, we recommend quantifying community size to inform ecological interpretation. Our results suggest that the 16S ratio and CTC methods report comparable patterns of activity that can be applied to observe ecological dynamics over time, space, or experimental treatment. IMPORTANCE Although the majority of microorganisms in natural ecosystems are dormant, relatively little is known about the dynamics of the active and dormant microbial pools through both space and time. The limited knowledge of microbial activity-dormancy dynamics is in part due to uncertainty in the methods currently used to quantify active taxa. Here, we directly compared two of the most common methods (16S ratios and active cell staining) for estimating microbial activity in plant-associated soil and found that they were largely in agreement in the overarching patterns. Our results suggest that 16S ratios and active cell staining provide complementary information for measuring and interpreting microbial activity-dormancy dynamics in soils. They also support the idea that 16S rRNA/rRNA gene ratios have comparative value and offer a high-throughput, sequencing-based option for understanding relative changes in microbiome activity, as long as this method is coupled with quantification of community size. 
    more » « less
  6. Abstract Nutrient enrichment impacts ecosystems globally. Population history, especially past resource environments, of numerically dominant plant species may affect their responses to subsequent changes in nutrient availability. Eutrophication can also alter plant–microbe interactions via direct effects on associated microbial communities or indirect effects on dominant species’ biomass production/allocation as a result of modified plant–soil interactions.We combined a greenhouse common garden and a field reciprocal transplant of a salt marsh foundation species (Spartina alterniflora) within a long‐term, whole‐ecosystem, nutrient‐enrichment study to determine whether enrichment affects plant production and microbial community structure differently depending on plant population history. For the greenhouse portion, we collected 20S. alternifloragenotypes—10 from an enriched creek that had received elevated nutrient inputs for 10 years and 10 from an unenriched reference creek—and reared them in a common garden for 1 year. For the field portion, we conducted a 2‐year, fully crossed reciprocal transplant experiment with two gardens each at the enriched and unenriched sites; we examined the effects of source site (i.e. population history), garden site and plant genotype.After 2 years, plants in enriched gardens had higher above‐ground biomass and altered below‐ground allocation compared to plants in unenriched gardens. However, performance also depended on plant population history: plants from the enriched site had decreased above‐ground and rhizome production compared to plants from the unenriched site, most notably in unenriched gardens. In addition, almost all above‐ and below‐ground traits varied depending on plant genotypic identity.Effects of nutrient enrichment on the associated microbial community were also pronounced. Following 1 year in common garden, microbial community structure varied by plant population history andS. alternifloragenotypic identity. However, at the end of the reciprocal transplant, microbial communities differed primarily between enriched and unenriched gardens.Synthesis. Nutrient enrichment can impact plant foundation species and associated soil microbes in the short term. Most importantly, nutrient enrichment can also have long‐lasting effects on plant populations and associated microbial communities that potentially compromise their ability to respond to changing resource conditions in the future. 
    more » « less